Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete
This research work on “Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete” is available in PDF/DOC. Click the below button to request or download the complete material
Sugarcane Bagasse is the fibrous residue leftover when sugarcane is squeezed for its juice. Bagasse ash is obtained by subjecting Bagasse to calcinations using furnace. This work is aimed tat using Bagasse Ash as a replacement in the production of concrete.
The bagassewas collected from dumped in a marketin Kano and thereafter sun-drie to eliminate any trace of moisture. It was then taken to the blast furnace for calcinations(controlled burning) at a temperature of 1250OC for 25minutes.The ash was then weighed and sieved with a 90μm standard sieve and the quantity retained on the sieve (black carbon) was weighed and discarded. The ash collected was investigated and its chemical compositions were obtained. Normal Consistency and Setting time for Cement and bagasse ash were determined. The concrete was batched using mix ratio 1:2:4 and the cement was replaced in varying percentages of 5%, 10%, 15%, 20% and 25% using Bagasse ash.Thereafter, the concrete was cured for 7, 14, 21, and 28days and its properties both in fresh and harden state were determined.
The result for Normal consistency of cement was achieved at 35% of water cement ratio (140ml of water added) which is equal to 34mm penetration.While Normal consistency for Bagasse ash was achieved at 33% of water Sugarcane Bagasse Ash (SCBA )ratio (132mls of water added) which is equal to 35mm penetration. Hence, the cement and bagasse ash are satisfactory for normal consistency of 34 to 35% range of specification.The Slump of the concrete shows a slight reduction as the bagasse ash content increases. Also, the results of the compressive strength of concrete at 20% replacement has highest compressive strength of 19.94N/mm2 at 28 days.
INTRODUCTION
1.1 Preamble
Concrete is the most commonly used construction material in the world. It is basically composed of two components: paste and aggregates. The paste which acts as binder contains cement, water and occasionally admixtures; the aggregate contains sand and gravel or crushed stone(Naik andMoriconi, 2003). The aggregate are relatively inert filler materials which occupy 70% to 80% of concrete and can therefore be expected to have influence on its properties( Mindess and Young, 2003).The infrastructural needs of developing countries have lead to huge increase in demand for Portland cement. According to BAU scenario, cement consumption will grow at high rate on world level in the year 2000-2030 ,the 1600 Metric tones of cement consumption in 2000 will increase almost two folds to 2880 Metric tons by 2030, implying an annual 2% grow rate (Nurdeen and Shahid, 2010).
Cement is one of the constituents of concrete and of very high technical benefits, but expensive and environmentally unfriendly material. (Naik and Moriconi, 2006). Therefore, requirements for economical and more environmental friendly cementing material have extended interest in other cementing materials that can be used as supplement for Ordinary Portland cement. Ground granulated furnace slag, fly ash etc have been used successfully for this purpose, Ordinary Portland Cement is frequently used as a major construction material in the country and the world at large. It is considered as a durable material of construction. However, the environmental issue is on the increasing side, as Portland cement is responsible for about 5%-8% global carbon dioxide (CO2) emissions due to it high demand(Jayminkumar and Raijiwala,2015). Researchers all over the worlds are searching out on ways of utilizing either industrial or agricultural waste as a source of raw material for industries. This waste utilization will not only aid the economy but will also bring about foreign exchange earnings and environmental pollution control.
Sugarcane is an agricultural product from which Bagasse Ash is obtained after squeezing out the sugary water in the sugarcane and subjecting it to heat by incinerating the residue through control burning to form ash. (Patcharin et al.,2009). Bagasse is the fibrous residue leftover when sugarcane is squeezed for its juice (Osinubi and Stephen,2005). The Sugarcane Bagasse creates environmental nuisance due to poor disposal which in turn forms garbage heaps (Oyejobi and Lawal, 2014). According to(Barroso and Bareras, 2000) one ton of sugarcane can generate 280kg of Bagasse waste. In the Northern part of Nigeria there is high production of sugarcane due to the soil and weather condition which favorably supports the farming of sugarcane and consequently there is abundant generation of Sugarcane Bagasse/residue waste which cause economic as well as environmental related issue. To solving these issues, enormous effort have been towards the Bagasse ash waste management. But there are yet no adequate research about the usefulness of sugarcane residue in the country, very little value is being attached to Bagasse. The residue has been found to be used for primary fuel source and also, for paper production. However, incinerating it to ash and adopting it as a good pozzolan adds to its economic value.The advancement in technology and desire for safer environment has stimulated the sense of economic reuse and proper management of material earlier discarded as waste. According to( Oriola and Moses, 2010), industrial activities often lead to depletion of natural resources, a process that may result in the accumulation of by-product and/or waste material. It is need of time to rise to the use of cement replacement materials in the concrete which can reduce the significant amount of cement consumption due to the hazardous effect of CO2 to the environment. The incinerating of organic waste of sugarcane i.e. Bagasse Ash contains pozzolanic material, Therefore, it is highly recommended to conduct research on Bagasse and their impact on concrete behavior, and also be adopted has a suitable replacement of cement in concrete
1.2 Statement of Problem
The production of cement is one of the most environmental unfriendly processes due to the emission of carbondioxide gas (CO2) to the atmosphere. Portland cement is responsible for about 5%-8% global carbon dioxide (CO2) emissions constituting environmental problem or impact which may likely be on the increased due to exponential demand of Portland cement(Jayminkumar and Raijiwala,2015).
In addition to its negative environmental impact, cement is also one of the most expensive materials when compared to the other constituents of concrete. The problem of high cost of cement is also a major concern of the construction industry(Anum and Williams, 2003).
The Sugarcane Bagasse creates environmental nuisance due to poor disposal which in turn form garbage heaps, if left to rot, will breakdown and release greenhouse gases, particularly methane, which is 27 times more dangerous to the Ozone than carbon-dioxide.(Australia Clean Energy Council)
1.3 Aim and Objectives
The aim of this research work is to investigate the suitability and effectiveness of bagasse ash as a partial replacement of cement in concrete.
The objectives of this research work includes:
i. Characterization of Bagasse Ash and to see if it exhibits pozzolanic property
ii. Determinationof influence of varyingbagasse ash on properties of concrete both in fresh and hardened states
1.4 Justification of the Study
The advancement in technology and desire for safer environment has stimulated the sense of economic reuse and proper management of material earlier discarded as waste. But there are yet no adequate research about the usefulness of sugarcane residue in the country, very little value is being attached to Bagasse. The residue has been found to be used for primary fuel source and also for paper production. However, incinerating it to ash and adopting it as a good pozolan adds to its economic value. This waste utilization will not only aid the economy but will also bring about foreign exchange earnings and environmental pollution control.
1.5 Scope of study
The research focuses on the determination of the suitability of Bagasse ash as a replacement for cement in concrete and construction works. The optimum percentage of bagasse ash required to provide the desired strength when cement was replaced by 0%, 5%, 10%,15%,and 20% sugarcane bagasse ash. Thereafter, the following testscompressive strength, Sieve analysis, density, consistency and setting time were carried out in order to evaluating the influence of bagasse ash on concrete.
Titled page
Certification
Dedication
Acknowledgment
Abstract
Table of content
List of Table
List of Figure
CHAPTER ONE:
PREAMBLE
1.1 Preamble 1
1.2 Statement of problem 2
1.3 Aims and Objective 4
1.4 Justification 4
1.5 Scope of the study 5
CHAPTER TWO:
LITERATURE REVIEW
2.1 Concrete 6
2.2 Properties of Concrete 7
2.2.1 Fresh properties 7
2.2.2 Hardened properties 7
2.3 Components of Concrete 7
2.3.1 Ordinary Portland Cement 7
2.3.2 Aggregates
2.3.3 Water 8
2.3.4 Admixtures 8
2.4 Cement 8
2.4.1 Types of cement 9
2.4.1.1 Portland cement 9
2.4.1.2 Portland pozzolana cement 11
2.4.2 Physical Properties of cement 12
2.4.2.1 Fineness 13
2.4.2.2 Consistency of cement paste 13
2.4.2.3 Setting time 14
2.5 Pozzolans 14
2.6 Cementitious Material 15
2.6.1 Fly ash 16
2.6.2 Lime stone 18
2.6.3 Condensed Silica Fume 18
2.7 Bagasse 19
2.8 Previous Work Done 20
CHAPTER THREE:
METHODOLOGY
3.1 Material Sourcing 25
3.1.1 Bagasse Ash 25
3.1.2 Cement 25
3.1.3 Aggregate 25
3.1.3.1 Fine Aggregates 26
3.1.3.2 Coarse aggregate 26
3.2 Research Procedure 26
3.2.1 Production of Bagasse Ash 27
3.2.2 Characterization of Bagasse Ash 28
3.2.3 Test on Bagasse ash and cement 28
3.2.3.1 Finesses Test 28
3.2.3.2 Normal Consistency Test 29
3.2.3.3 Setting time test (Initial and Final) 30
3.2.4 Test on aggregate 31
3.2.4.1 Sieve Analysis 31
3.2.4.2 Specific gravity and absorption capacity 32
3.2.4.3 Moisture content 33
3.2.5 Preparation of Concrete Specimens and Mixing Procedure 34
CHAPTER FOUR:
RESULTS AND DISCUSSION
4.1 Characterization of Bagasse ash and cement 35
4.1.1 Physical properties of cement and Bagasse ash Result 38
4.1.2 Chemical composition of sugarcane Bagasse Ash 38
4.2 Result on Sieve Analysis 40
4.2.1 Grain size distribution for Bagasse Ash and OPC Cement 40
4.2.2 Results for Sieve Analysis of Fine Aggregate 41
4.2.3 Result for Sieve Analysis of Coarse Aggregate 42
4.3 Workability Test (Slump Test) 44
4.4 Average compressive strength Result 45
CHAPTER FIVE:
CONCLUSION AND RECOMMENDATION
5.1 Conclusion 47
5.2 Recommendation 47
Reference
A 150–300 word synopsis of the main objectives, methods, findings, and conclusions of the Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete should be included in the abstract.
Every chapter, section, and subsection in the research work should be listed in the Table of Contents, including the page numbers that correspond to each one.
The background, research question or hypothesis, and objective or aim of the Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete should all be presented in the introduction, which is the first section.
A survey of previously conducted research on Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete should be included in the literature review, together with an overview of the main conclusions, a list of any gaps, and an introduction to the current study.
The conclusion part should address the implications of the study, provide an answer to the research question and summarize the key findings.
The reference of Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete, which should be formatted following a particular citation style (such as APA, MLA, or Chicago), is a list of all the sources cited in the title.
Other important sections of the Effects Of Sugar Cane Bagasse Ash As Suplementary Cementitious Material In Production Of Concrete should include the Title page, Dedication, Acknowledgments, Methodology, Results, Discussion, Appendices, Glossary, or Abbreviations List where applicable.