Design And Construction Of A Solar Powered Inverter
This research work on “Design And Construction Of A Solar Powered Inverter” is available in PDF/DOC. Click the below button to request or download the complete material
ABSTRACT
This work is on design and construction of a solar panel inverter. Solar panel inverter converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical component in a photovoltaic system, allowing the use of ordinary AC-powered equipment.
In solar panel inverter, Solar panels produce direct electricity with the help of electrons that are moving from negative to positive direction. Most of the appliances that we use at home work on alternative current. This AC is created by the constant back and forth of the electrons from negative to positive. In AC electricity the voltage can be adjusted according to the use of the appliance. As solar panels only produce Direct current the solar inverter is used to convert the DC to AC.
TABLE OF CONTENTS
TITLE PAGE
APPROVAL PAGE
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT
TABLE OF CONTENT
CHAPTER ONE
CHAPTER ONE
1.0 INTRODUCTION
1.1 BACKGROUND OF THE PROJECT
1.2 PROBLEM STATEMENT
1.3 OBJECTIVE OF THE PROJECT
1.3 SCOPE OF THE PROJECT
1.4 PURPOSE OF THE PROJECT
1.5 SIGNIFICANCE OF THE PROJECT
1.6 PROBLEM OF THE PROJECT
1.7 LIMITATION OF THE PROJECT
1.8 PROJECT ORGANISATION
CHAPTER TWO
2.0 LITERATURE REVIEW
2.1 HISTORITICAL BACKGROUND OF PHOTOVOTAIC CELL
2.2 THEORETICAL REVIEW OF SOLAR CELL
2.3 REVIEW OF SOLAR CELL EFFICIENCY
2.4 REVIEW OF SOLAR CELL MATERIALS
2.5 REVIEW OF EARLY INVERTERS
CHAPTER THREE
3.0 CONSTRUCTION
3.1 BASIC DESIGNS OF A SOLAR INVERTER
3.2 BLOCK DIAGRAM OF THE SYSTEM
3.3 DESCRIPTION OF SOLAR INVERTER UNITS
3.4 MODIFIED SINE WAVE POWER SOLAR INVERTER CIRCUIT USING IC 4093
3.5 CIRCUIT OPERATION
3.6 DESCRIPTION OF COMPONENTS USED
3.7 HOW TO CHOOSE THE BEST INVERTER BATTERY
CHAPTER FOUR
RESULT ANALYSIS
4.0 CONSTRUCTION PROCEDURE AND TESTING
4.1 CASING AND PACKAGING
4.2 ASSEMBLING OF SECTIONS
4.3 TESTING OF SYSTEM OPERATION
4.4 COST ANALYSIS
CHAPTER FIVE
5.0 CONCLUSION
5.1 RECOMMENDATION
CHAPTER ONE
1.0 INTRODUCTION
solar inverter converts direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS)–component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar power inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection [1].
The solar panel used in solar inverter produces direct electricity with the help of electrons that are moving from negative to positive direction. Most of the appliances that we use at home work on alternative current. This AC is created by the constant back and forth of the electrons from negative to positive. In AC electricity the voltage can be adjusted according to the use of the appliance. As solar panels only produce Direct current the solar inverter is used to convert the DC to AC[2] [3].
An inverter produces square waves or a sine wave which can be used for running lights, televisions, lights, motors etc. However these inverters also produce harmonic distortion[2].
1.1 BACKGROUND OF THE PROJECT
Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar-powered vehicles. Here you can learn more about the milestones in the historical development of solar technology, century by century, and year by year. You can also glimpse the future. From the 3rd Century BC when Archimedes fought off Roman ships by concentrating the sun rays at them with brass shields (they burst into flame), through work by some of the best known figures in the history of science, harnessing the power of the sun has long been a goal of human innovation. Let’s look at some of the highlights:
In 1767 Swiss physicist, alpine explorer, and aristocrat Horace de Saussure is credited with inventing the first working solar oven, amongst other discoveries. Constructed from 5 layers of glass and measuring around 12 inches across, the oven worked by allowing light to pass through the glass before being absorbed by the black lining and turned into heat. The heat is then reflected by the glass, therefore heating the space inside the box up to 87.5 degrees Celsius [4][5].
Also in 1839 Edmond Bequerel, born in Paris in 1820, discovered that when two electrodes were placed in an electrolyte (electricity-conducting solution), a voltage developed when light fell upon the electrolyte. The basic principles of solar power had been uncovered [4].
Many people using solar power these days which prove that its necessity has been increased in the current years. A Solar inverter is similar to a normal electric inverter but uses the energy of the Sun, that is, Solar energy. A solar inverter helps in converting the direct current into alternate current with the help of solar power. Direct power is that power which runs in one direction inside the circuit and helps in supplying current when there is no electricity. Direct currents are used for small appliance like mobile e phones, MP3 players, IPod etc. where there is power stored in the form of battery. In case of alternative current it is the power that runs back and forth inside the circuit [4] [5]. The alternate power is generally used for house hold appliances. A solar inverter helps devices that run on DC power to run in AC power so that the user makes use of the AC power. If you are thinking why to use solar inverter instead of the normal electric one then it is because the solar one makes use of the solar energy which is available in abundant from the Sun and is clean and pollution free.
Solar inverters are also called as photovoltaic solar inverters. These devices can help you save lot of money. The small-scale grid one have just two components i.e. the panels and inverter while the off grid systems are complicated and consists of batteries which allows users to use appliances during the night when there is no Sunlight available. The solar panel and the batteries that are placed on rooftops attract Sun rays and then convert the Sunlight into electricity. The batteries too grab the extra electricity so that it can then be used to run appliances at night [4].
1.2 PROBLEM STATEMENT
As a result of continuous power failure and fluctuation in power supply by Power Holding Company of Nigeria (PHCN), sensitive appliances and system are affected by interruption power supply and also the blackout also affect human generally in that it takes away our happiness. Then, this project is to provide a back-up and reliable power supply from a renewable energy source (solar panel) to power some selected home appliances such as computers, television set, lighting systems.
1.2 AIM OBJECTIVE OF THE PROJECT
The aim of this project is to design and construct a solar panel inverter.
The objectives of this project are;
- To provide efficiency, steadiness in the use of power appliances, by ensuring continuous availability of power supply even in the absence of mains.
- To eliminate all suspense from mains outage during the execution of an important and urgent assignment as may be required.
- To design a simple and rugged technology; this will utilize the appropriate use of home or local electrical appliances.
1.3 SCOPE OF THE PROJECT
This solar power source makes it possible to provide a clean reliable supply of alternative electricity free of sags or surges which could be found in the line voltage frequency (50Hz). This project design aims at creating a power source which can be utilized as a regular power source by remote rural industries and private individuals at home or in the office. This project involves the design and construction of a Solar PV (photovoltaic) system which involves a solar panel, car battery and an inverter. Furthermore, as a consumer is generating his or her own electricity they also will benefit from a reduction in their electricity bills.
1.4 PURPOSE OF THE PROJECT
The purpose of this work is to converts the DC (Direct Current) output of a PV solar panel into a utility frequency AC (alternating current) that can be fed into a commercial electrical grid (or) used by a local, off-line electrical network [9].
1.5 SIGNIFICANCE OF THE PROJECT
Solar inverter is useful in making appliances work at residential and industrial levels, such as:
- A Solar Inverter is better optimised for solar power than the regular one. For example, it will prioritise power supply from the solar panels. This means that when the energy from the Sun is adequate like during afternoons, the inverter will draw power entirely from the solar panels to power your home or office even if public power supply is available. This can lead to huge savings on power bills [7].
- Similarly, a Solar hybrid inverter will prioritise charging from solar panels, enabling your batteries to charge via the PV panels even when public power supply is on, leading also to savings on your power bills.
- Solar inverter has always helped in reducing global warming and green house effect.
- Also use of solar inverter helps in saving money that would have used for buying fuel for conventional generator
- Some solar inverters will allow you prioritise charging to solar panels or power grid depending the battery level. Some solar inverters are even intelligent enough just to take just as much deficit current from the grid as is required [7].
- A solar inverter helps in converting the Direct current in batteries into alternative current. This helps people who use limited amount of electricity.
- There is this synchronous solar inverter that helps small homeowners and power companies as they are large in size.
- Then there is this multifunction solar inverter which is the best among all and works efficiently. It converts the DC power to AC very carefully which is perfect for commercial establishments.
- Solar inverters are the best way and they are better than the normal electric ones. Also their maintenance does not cost much money.
- Solar Inverters can work when there is no Sunlight but provided their battery is charged fully with the help of Sunlight [7].
1.6 PROBLEM OF THE PROJECT
- Initially you need to shell out a lot of money for buying a solar inverter
- It will work effectively and produce direct current only when the Sunlight is strong.
- The solar panels that are used to attract Sunlight requires lots of space
- The device can work efficiently only if the presence of the Sun is strong.
- Maintenance and replacement may require more effort. In the event of a problem, a technician will need to access the roof to make repairs. Depending on your maintenance plan and warranty, this may cost you money [8].
1.7 LIMITATION OF THE PROJECT
- The intensity of the Sun varies throughout the day. This creates an over-charging problem if the panels are connected to the battery directly, and It should also be able to tell you when you connect the panels wrongly (i.e. positive to negative, etc) and also provide protection against short-circuit. For this reason a charge controller must be used to offer protection from high voltage and current from the panels [5].
- The inverter frequency is rated at 50hz
- Iron casing and good heat sink is been used for heat absorption
1.8 ORGANISATION OF THE PROJECT
This work is organized in such a way that every reader of this work will understand how solar power inverter is been made. Starting from the chapter one to chapter five focused fully on the topic at hand.
Chapter one of this work is on the introduction to solar power inverter. In this chapter, the background, significance, objective limitation and problem of solar power inverter were discussed.
Chapter two is on literature review of solar power inverter. In this chapter, all the literature pertaining to this work was reviewed.
Chapter three is on design methodology. In this chapter all the method involved during the design and construction were discussed.
Chapter four is on testing analysis. All testing that result accurate functionality was analyzed.
Chapter five is on conclusion, recommendation and references.
REFERENCES
[1] The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition, IEEE Press, 2000,ISBN 0-7381-2601-2, page 588
[2]. James, Hahn. “Modifi ed Sine-Wave Inverter Enhanced”. Power Electronics.
[3]. Barnes, Malcolm (2003). Practical variable speed drives and power electronics. Oxford: Newnes. p. 97. ISBN 0080473911.
[4]. Rodriguez, Jose; et al. (August 2002). “Multilevel Inverters: A Survey of Topologies, Controls, and Applications”. IEEE Transactions on Industrial Electronics (IEEE) 49 (4): 724–738.
[5]. Owen, Edward L. (January–February 1996). “Origins of the Inverter”. IEEE Industry Applications Magazine: History Department (IEEE) 2 (1): 64–66.
[6]. Dr. Ulrich Nicolai, Dr. Tobias Reimann, Prof. Jürgen Petzoldt, Josef Lutz: Application Manual IGBT and MOSFET Power Modules, 1. Edition, ISLE Verlag, 1998, ISBN 3-932633-24-5.
[7] https://www.energysage.com/solar/101/microinverters-power-optimizers-advantages-disadvantages/
[8] http://www.doityourself.com/stry/troubleshooting-common-problems-with-a-solar-inverter.
[9] https://en.wikipedia.org/wiki/Solar_inverter.
CHAPTER FIVE
5.1 CONCLUSION
In the context of renewable energy, a solar inverter is a device that will convert DC battery/solar panel voltage into mains type AC power; suitable for use in your home or business.
Without this conversion from DC to AC, special appliances or adapters often need to be purchased – and DC appliances are often more expensive than their AC counterparts.
The above two types of batteries are popular inverter batteries. Before buying the inverter and the battery, ask your dealer which suits your requirement better.
5.2 RECOMMENDATION
This project is designed to be used in our homes, offices and industries where there is need for 24hrs supply. And should be used and maintain by a qualified personnel. A dip cycle battery is also recommended.
A 150–300 word synopsis of the main objectives, methods, findings, and conclusions of the Design And Construction Of A Solar Powered Inverter should be included in the abstract.
Every chapter, section, and subsection in the research work should be listed in the Table of Contents, including the page numbers that correspond to each one.
The background, research question or hypothesis, and objective or aim of the Design And Construction Of A Solar Powered Inverter should all be presented in the introduction, which is the first section.
A survey of previously conducted research on Design And Construction Of A Solar Powered Inverter should be included in the literature review, together with an overview of the main conclusions, a list of any gaps, and an introduction to the current study.
The conclusion part should address the implications of the study, provide an answer to the research question and summarize the key findings.
The reference of Design And Construction Of A Solar Powered Inverter, which should be formatted following a particular citation style (such as APA, MLA, or Chicago), is a list of all the sources cited in the title.
Other important sections of the Design And Construction Of A Solar Powered Inverter should include the Title page, Dedication, Acknowledgments, Methodology, Results, Discussion, Appendices, Glossary, or Abbreviations List where applicable.