Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm

This research work on “Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm” is available in PDF/DOC. Click the below button to request or download the complete material

Abstract

The project aims to revolutionize disease monitoring through the use of artificial intelligence (AI), advanced sensor technology, and crowd-sourcing, connecting the global agricultural community to support smallholder farmers. Specifically, a Convolutional Neural Network (CNN) was employed in this study. CNN models offer promise in enhancing plant disease phenotyping, where traditional methods rely on visual diagnostics requiring specialized training. Deploying CNNs on mobile devices presents new challenges such as varying lighting conditions and orientations. Therefore, evaluating these models under real-world conditions is crucial for their reliable integration into computer vision tools for plant disease assessment.

Our approach involved training a CNN object detection model to identify foliar disease symptoms in cassava (Manihot esculenta Crantz). Subsequently, we implemented the model in a mobile application and assessed its performance using images and videos captured in an agricultural field in Nigeria, totaling 720 diseased leaf samples. We conducted tests for two severity levels of symptoms—mild and pronounced—within each disease category to evaluate the model’s effectiveness in early symptom detection.

Across both severity levels, we observed a decline in performance metrics, specifically the F-1 score, when analyzing real-world images and video data. Notably, the F-1 score decreased by 32% for pronounced symptoms in real-world images, primarily due to reduced model recall. Our findings underscore the importance of fine-tuning recall metrics to achieve desired performance levels in practical settings if mobile CNN models are to fulfill their potential. Additionally, the varying performance outcomes between image and video inputs highlight critical considerations for designing applications intended for real-world deployment

Table of Contents

Cover page
Title page
Approval page
Dedication
Acknoweldgement
Abstract

Chapter one
1.0 introduction
1.1 Background of the study
1.2 Problem statement
1.3 Aim and objective of the study
1.4 Significance of the studyt
1.5 Project organisation

Chapter two
Literature review
2.1 Introduction
2.2 Review of the study
2.3 Overview of cassava
2.4 Review of different types of cassava diseases

Chapter three
3.1 Materials and method

Chapter four
4.1 Result
4.2 Data preprocessing
4.3 Cnn model

Chapter five
5.1 Discussion and conclusion
5.2 Recommendation
5.3 References

Academic Research Structure: Important Sections

A 150–300 word synopsis of the main objectives, methods, findings, and conclusions of the Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm should be included in the abstract.

Every chapter, section, and subsection in the research work should be listed in the Table of Contents, including the page numbers that correspond to each one.

The background, research question or hypothesis, and objective or aim of the Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm should all be presented in the introduction, which is the first section.

A survey of previously conducted research on Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm should be included in the literature review, together with an overview of the main conclusions, a list of any gaps, and an introduction to the current study.

The conclusion part should address the implications of the study, provide an answer to the research question and summarize the key findings.

The reference of Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm, which should be formatted following a particular citation style (such as APA, MLA, or Chicago), is a list of all the sources cited in the title.

Other important sections of the Artificial Intelligence Mobile App For Identification Of Cassava Diseases In Farm should include the Title page, Dedication, Acknowledgments, Methodology, Results, Discussion, Appendices, Glossary, or Abbreviations List where applicable.